Engine Simulation & Optimization Software
Thermodynamic engine simulation tools

The thermodynamic engine simulation tools are most applicable for general engine analysis and they are widely used because do not require large resources.

How to use them for diesel combustion optimization to meet emission regulations?

<table>
<thead>
<tr>
<th>Tool</th>
<th>Type</th>
<th>Model</th>
<th>User model</th>
<th>Link with CFD</th>
<th>Combustion model</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT-Power (Gamma Technology)</td>
<td>1D</td>
<td>Wiebe; User model;</td>
<td>Link with CFD; DI Jet model (Hiroyasu).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOOST (AVL)</td>
<td>1D</td>
<td>Wiebe; User model;</td>
<td>Link with CFD; Mix Control Combust (MCC) model.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMESim (LMS International)</td>
<td>1D</td>
<td>Wiebe; User model;</td>
<td>Link with CFD; Mix Control Combust (MCC) model.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAVE (Ricardo)</td>
<td>1D</td>
<td>Wiebe; User model;</td>
<td>Link with CFD; Hiroyasu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIESEL-RK</td>
<td>1D</td>
<td>Wiebe;</td>
<td>RK-Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard tool

NO Combustion Optimization

Fast simulation + Optimization of Combustion
Performance of Diesel Combustion Models

- Multi-Dimensional (CFD)
 - Require too much computational time
 - Formal optimization is not possible.

- Quasi-Dimensional, Multi-zone RK-Model
 - From IVC till EVO

- Time: 2 days
- Time: 10 hours
- Time: 2 hours
- Time: 30 seconds instead of 4 days in case A

11 Zones of Spray
Diesel combustion models

Zero-dimensional, Single-zone

Quasi-dimensional, Multi-zone

Multi-Dimensional (CFD)

Heat Release is specified by empirical factors...
- Wiebe;
- Watson;
- Austen & Lyn;
- Shipinski;
- Whitehouse & Way;
- (MCC) model; etc.
Workability of Diesel combustion models for engineering tasks of emission control

<table>
<thead>
<tr>
<th>Zero-Dimensional, Single-zone</th>
<th>Quasi-dimensional, Multi-zone</th>
<th>Multi-Dimensional (CFD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, due to insufficient capabilities</td>
<td>May be acceptable, if improved</td>
<td>Require too much resources</td>
</tr>
</tbody>
</table>

Even the most advanced **Hiroyasu model** has failings:
- Does not account piston motion;
- Supports only easy shapes of piston bowls;
- Supports only central location of injector;
- Does not account interaction among sprays;
- Does not account mass-exchange among packages;
- Does not account hitting of fuel on cylinder liner and head.

The existing Quasi-dimensional multi-zone models have limitations at resolving combustion optimization tasks due to:
- Insufficiently detailed consideration of determining processes of mixture formation, combustion, emission formation;
- as a result they have Insufficient accuracy of simulation of combustion and emission.

So, the most actual problems of engine simulation and their optimization are out of capabilities of existing simulation tools

We offer to use another concept of **Multi-Zone quasi-dimensional model** where sprays are divided on zones using both **geometrical fundamentals**, and **mixture formation & evaporation conditions**.

![RK-Model Diagram](image-url)
DIESEL – RK : combustion model possibilities

Advanced features of diesel combustion model:

1. Original multi-zone fuel spray combustion model (RK-model) which accounts:
 a. fuel properties including bio-fuels and blends of bio-fuels with diesel oil;
 b. few fuel injection systems in one cycle of dual fuel engine;
 c. detailed piston bowl shape;
 d. swirl profile and swirl intensity;
 e. injection profile, including multiple injection and PCCI / HCCI;
 f. number, different diameters and directions of nozzles holes;
 g. detailed interaction of sprays among themselves in volume and on walls accounting local walls temperatures.

2. Detail Chemistry simulation at NOx and Ignition Delay prediction.

3. Model of Soot formation.

Options of ICE simulation tool:

- "Fuel Spray Visualization" code (animation of the simulation results).
- Built-in procedures of **Multiparameteric optimization** (15 methods of the nonlinear programming).
- Tool for express data file creation for different kinds of engines.
- Simulation of different combustion concepts:
 - Dual Fuel;
 - Gas;
 - PCCIO / HCCI;
 - Prechamber;
 - Assisted HCCI.
Original multi-zone fuel spray model (RK-Model)

Schematic Fuel spray structure

Character zones

Before spray and wall impingement:
1. Dense axial core of free spray.
2. Dense forward front.
3. Dilute outer sleeve of free spray.

After spray and wall impingement:
4. Axial conical core of NWF.
5. Dense core of NWF.
6. Dense forward front of NWF.
7. Dilute outer surroundings of NWF.

Additional zones
8. Fuel allocated on cylinder Head surface.
10. Fuel allocated in crossing of NWF cores formed by adjacent sprays.
11. Fuel allocated in crossings of Fronts and Cores of free sprays.

* NWF is the so-called Near-Wall Flow of air with high density of fuel drops

Publications:
• SAE 2005-01-2119;
• SAE 2006-01-1385;
• SAE 2007-01-1908;
• SAE 2009-01-1956;
• SAE 2013-01-0882;
• JSAE 20159169;
• JSAE 20159328.
Representation of spray zones and piston bowl geometry

1. **Analytical:**
 - Piston bowl is set of straight cones and straight truncate cones.
 - Spray zones are sets of sloping cones and loping truncate cones.

2. **As a 3D mesh** of cubic cells. Number of cells: ~ 80 per Cylinder Diameter

Piston crown with grooves for injectors in OP diesel 88-Г

... corresponding 3D mesh with cubic cells

Spray is a set of cone and truncate cones

A volume of every spray zone is a sum of Volumes of all cells included into the zone.

The cells included into zones of few sprays simultaneously form zone of sprays intersection.
Spray tip penetration modeling

Modified Lyshevski’s equations using dimensionless parameters

\[We = U_{0m}^2 d_n \rho_f / \sigma_f ; \]
\[M = Oh^2 = \mu_f^2 / (\rho_f d_n \sigma_f) ; \]
\[\Theta = \tau_s^2 \sigma_f / (\rho_f d_n^3) ; \]
\[\rho = \rho_{air} / \rho_f ; \]

Penetration at break up:

\[l_a = A_s \Theta^{0.35} \exp[-0.2(\tau_s/\tau_g)]; \]

Penetration at main phase:

\[l_b = B_s^{0.5} \tau_s^{0.5} ; \]

where:

\[A_s = 1.22 l_g \Theta_g^{-0.35} \]

\[B_s = d_n U_{0m} We^{0.21} M^{0.16} / (D_s \sqrt{2 \rho}) ; \]

\[D_s = \frac{-1.3511}{\exp(d_n)} + 0.68764 \exp(d_n) - 0.88869 \ln(d_n) \]

\[d_n - \text{nozzle bore, mm.} \]

Experimental data:

SAE Pap. N 2002-01-0946
Free spray contour angle modeling

Lyshevski’s equations

\[
\begin{align*}
\gamma_a &= 2 \arctan \left(E_s \ We^{0.35} M^{-0.07} \ \Theta^{-0.12} \ \rho^{0.5} e^{0.07 \tau_s / \tau_g} \right); \\
\gamma_b &= 2 \arctan \left(F_s \ We^{0.32} M^{-0.07} \ \Theta^{-0.12} \ \rho^{0.5} \right)
\end{align*}
\]

Penetration at break up: \(\gamma_a \)

Penetration at main phase: \(\gamma_b \)

where:
\[
E_s = 0.932 F_s \ We^{-0.03} \ \Theta \cdot 0.12 \\
F_s = 0.0075 \div 0.009
\]

Usage of dimensionless parameters allows account properties of alternative fuels in simulation.

The free spray contours obtained by different ways:
a) calculated with KIVA by Reitz and Bracco [33];
b) measured by Dan [34];
c) calculated by Jung and Assanis [35] using Hiroyasu and Arai equations [36];
d) this study.

Simulation of the fuel sprays in the swirling air flow

Phenomenological Model of Interaction of Spray and their Near Wall Flow with Swirl and Walls.

\[l_{wj} = K_j B_{sw}^{0.5} \tau_w^{0.5} + C_{wj} \rho v^{0.5} a_{32}^{1.5} \int_0^{\tau_w} (W_t - U_t) \cos \beta \, d\tau_w; \]
\[\tau_w = \tau_s - \tau_{sw}; \]
\[K_j = \sqrt{\sin \gamma_1 \sin \gamma_3 + 1.2(1 - \sin \gamma_j) - 2(\cos \gamma_j)} \]

Effect of impingement angles \(\gamma_j \)

Effect of local swirl velocity \(W_t \)

Frame #

Photo-record obtained by V.V. Gavrilov

Swirl profiles

Quasi-solid body type II
Parabolic type
Quasi-solid body type I

Piston bowl
Allocation of air in the character zones

Air motion around fuel spray

Scheme of air flows in a diesel spray

Motion of Elementary Fuel Mass (EFM) from injector to spray front zone \(l_k \) and spray tip \(l_m \).

Mass of entrained air \(\Delta m_a \) for every EFM \(\Delta m_f \) is defined from momentum conservation:

\[
U_0 \Delta m_f = U_k \left(C_l \Delta m_f + \Delta m_a \right)
\]
Preprocessor for Piston Bowl Design Specification

Specification by main dimensions

Specification by coordinates of points

Detailed geometry of piston bowl and configuration of nozzles holes allows definition of Coordinates and Time of spray with wall impingement.
Allocation of fuel in the character zones

Truck diesel Yamz:
S/D = 140/130, RPM = 1700

Locomotive diesel Д49
S/D = 260/260,
RPM = 1000, ВМЕР = 15 bar
Visualization of sprays evolution with account the swirl

Experiment:
Tractor diesel СМД 4Л D/S = 120/140
RPM=1800,
BMEP = 8 bar.
3D Fuel Spray Visualization code

3D visualization allows rotate animation, zoom and highlight sprays and zones

\[\tau = K_j r_0^{0.5} \]

Computational time of spatial 7 sprays evolution simulation (in thermodynamic cylinder model) is about **1 minute**!
3D visualization of sprays evolution in 2 stroke large marine engine with 2 injectors in cylinder.

Dark Green bullets mark spatial intersection of sprays

Dark Blue – their intersections
3D Fuel Spray Evolution

3D visualization of sprays evolution in 2 stroke large marine engine with 3 injectors in cylinder.

Yellow bullets mark spatial intersection of sprays.

Dark Green bullets mark spray # 4, #9 & # 14; Blue bullets mark Near Wall Flows on cylinder head; Dark Blue – their intersections.
Effect of Spatial intersection of sprays on HRR in engine with side injection system

Red, Yellow, Green and Blue are cells of sprays core.

Swirl

View from bottom (through piston)

Experiment
Simulation of combustion in OP engine

18 L D/S = 230 / 2x300 6700 kW @ 900 RPM

CA = 352 [deg]

Animation shows only 4 sprays from 1 injector.

Green bullets show intersection of the sprays
Simulation of fuel spray motion and combustion in two-stroke diesel with side injection system

Engine: Mitsubishi UEC 45 LA
D = 450 mm S = 1350 mm
RPM = 158;
2 injectors: 4 x 0.75
Angles of holes in above view: 50°, 35°, 9°, -1°
Results of simulation of fuel sprays evolution with DIESEL-RK software in comparison with published CFD simulation and experiment.

Mitsubishi UEC 45 LA
D = 450 mm S = 1350 mm
RPM = 158;
2 injectors: 4 x 0.75
Angles of holes in top view: 50°, 35°, 9°, -1°
Intersections of sprays: (Yellow markers).

![3D Fuel spray visualization graph](image-url)
Red, Yellow, Green & Blue bullets are sprays core zones cells.

3D visualization of sprays evolution in diesel with side injection system

Brown bullets are Sprays Front Zones Cells.

Zones of Near Wall Flow on the Cylinder Liner.

Black bullets are the cells where the spray cores intersect each other.

Prune Bullets are Zones of Near Wall Flow on the piston surface

Near Wall Flow of “light blue” spray

Near Wall Flow of “blue” spray
Calculation of the zone temperature

Energy balance equation for every zone of the spray:

\[
\Delta U_a + \Delta U_{lf} + \Delta U_{vf} = \Delta Q_{a IN} + \Delta Q_{lf IN} + \Delta Q_{vf IN} - \Delta Q_{a OUT} - \Delta Q_{lf OUT} - \Delta Q_{vf OUT} - p\Delta V - H_{evap} + \Delta Q_X
\]

where: \(\Delta U \) is difference of internal energy at the end and start of time step;
\(\Delta Q_{IN} \) is energy, delivered into zone; \(\Delta Q_{OUT} \) is energy, removed from zone;
\(p \) is a pressure, \(\Delta V \) is variation of the zone volume; \(H_{evap} \) is a heat for droplet evaporation;
\(\Delta Q_X = m_{vf 2} \xi_b H_U \) is heat of combustion of fuel vapor in the zone.

Indexes: \(a \) – gas (air); \(lf \) – liquid fuel; \(vf \) – fuel vapor; \(fe \) – evaporated fuel;
1 and 2 mean start and end of time step; \(IN \) and \(OUT \) are delivering and removing.

The diameter of the fuel droplets after evaporation during time step \(d\tau \):

\[
d_{322} = \sqrt{d_{32 mix}^2 - K_i d\tau}
\]

The diameter of the fuel droplets (SMD) in the zone after their mixing; here \(N \) is a number of droplets in zone.

The mass of evaporated fuel is calculated using diameters of fuel droplets prior and after evaporation:

\[
\Delta m_{fe} = (m_{lf 1} + \Delta m_{lf IN}) \left[1 - \left(\frac{d_{322}}{d_{32 mix}} \right)^3 \right]
\]
Modeling of evaporation

Evaporation rate of droplet is described by Sreznevski’s equation:

\[d_{32} = \sqrt{d_{32 \text{mix}}^2 - K_i d \tau} \]

where \(d_{32} \) is a current Sauter Mean Diameter of droplets; \(d \tau \) is a time step.

\(K_i \) is evaporation constant (every i-zone has own \(K_i \))

\[K_i = 4 \cdot 10^6 \text{ Nu}_D \text{ Di} p_{Si} / \rho_f \]

\(\text{Nu}_D \) is Nuselt number for diffusion process (Sherwood number). Every zone has own \(\text{Nu}_D \).

\(D_p \) is Diffusion Coefficient (every zone has own \(D_{pi} \)):

\[D_{pi} = D_{po} \left(T_{ki} / T_o \right) \left(p_o / p \right) \]

\(D_{pi} \) depends on Equilibrium Evaporation Temperature \(T_{ki} \) and current pressure \(p \);

\(p_{Si} \) is Saturated Vapor Pressure at the temperature \(T_{ki} \) (every zone has own \(p_{Si} \)).

\(T_{ki} \) of i - zone is calculating using energy balance around a droplet (express. of Virubov D.N.):

\[\lambda_a (T_i - T_{ki}) = D_{pi} p_{Si} \left[C_f (T_{ki} - T_f) + h_{\text{evap}} + C_{fv} \frac{T_i - T_{ki}}{2} \right] \]

where: \(\lambda \) is heat conductivity at \(T_{ki} \); \(T_i \) is character temperature of i-zone; \(C_f \) and \(C_{fv} \) are heat capacity of fuel and fuel vapor, \(T_f \) is injected fuel temperature.
Validation of results of numerical modeling

1 cyl MAN test engine D/S=320/440; RPM=750; BMEP=6.54 bar [*]

Сгорание начинается при CA = 358.5 град. Однако, в расчете не получается столь резкого скачка температуры во фронте струи, как это фиксирует измерение, возможно в алгоритме расчета не достаточно оценена степень выгорания паров топлива ξ_b в начальный момент объемного сгорания. Тем не менее, расчетная температура в зоне фронта струи близка к экспериментальному значению. Позднее, при CA > 360 град, относительно более горячий передний фронт струи уходит из зоны измерения вперед, и его место замещает более холодное ядро струи. (Задняя граница зоны фронта струи удаляется более чем на 55 мм от форсунки.) Фиксируемая температура в зоне измерения в это время остается высокой, она заметно превышает среднюю расчетную температуру ядра, по крайне мере до момента времени CA = 362 град., рис. 13. Отличие температур в данном случае объясняется тем, что температура в ядре не равномерно распределена по его длине: чем ближе к фронту струи, тем выше температура. А именно головная часть ядра попадает в зону измерения до момента CA = 362 град., что подтверждается и результатами визуализации развития струи. В расчетных же данных фигурирует средняя температура по объему зоны. Позднее, при CA > 362 град., когда в зону измерения попадает уже основной объем (срединная часть) ядра струи, расчетная средняя температура ядра струи практически совпадает с результатами измерений. В результате следует отметить, что расчет достаточно точно отражает температуру внутри струи, а значит и процессы массообмена, испарения и сгорания внутри струи.

Improved ignition delay calculation

For engines with PCCI / HCCI the existing empirical equations for Ignition Delay prediction cannot be used and Detailed Chemistry Model was developed and implemented.

The Lawrence Livermore National Laboratory (LLNL) mechanism is used for diesel fuel. At every time step the delay is calculated taking into account:
- Pressure,
- Temperature,
- Burnt Gas Fraction (EGR),
- Air/Fuel Ratio.

Calculation for n-heptane (Diesel)

<table>
<thead>
<tr>
<th>Temperature (K/T)</th>
<th>Ignition Delay (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>1,5</td>
<td></td>
</tr>
</tbody>
</table>

Surrogate fuel

- Diesel fuel
- n-heptane
- n-heptane + Methyl butanoate

Chemical mechanism

- 160 species 1540 reactions
- 49 species 144 reactions
Low temperature combustion simulation

Low Temperature Combustion (LTC) Model is used when High Temperature Combustion (HTC) ignition delay exceeds some value. For engines with PCCI / HCCI the LTC delay Θ_{iLTC} is function of HTC delay Θ_{iHTC} and EGR fraction C:

$$\Theta_{iLTC} = 8.281 + 1.0259 \Theta_{iHTC} - 4.8822 \ln \Theta_{iHTC} - \sqrt{31.602 C}$$

Fraction of fuel burning by LTC mechanism can be calculated with expression derived by processing published data:

$$x_{LTC}^{max} = \left(0.102 - 0.0392 C\right) \cdot \left(\frac{81.6}{\exp \Theta} - \frac{8.88}{\Theta} + 1.2261\right)$$

where $\Theta = \text{MAX}(6.7, \Theta_{iLTC})$.

Heat release of LTC can be approximated with Wiebe expression, as a function of crank angle φ varied from the beginning of LTC (where $\varphi = 0$) up to φ_z:

$$x_{LTC}(\varphi) = x_{LTC}^{max} \left\{ 1 - \exp\left[-2.9957 \left(\frac{\varphi}{\varphi_z}\right)^{m_v+1} \right] \right\}$$

where: $m_v = 1.2 + 0.69 C$ is a mode of Wiebe function; $\varphi_z = 6...8$ CA deg is a duration of the LTC.

Engine simulation software possibilities

Full cycle thermodynamic engine simulation tool DIESEL-RK has following features for combustion optimization:

- Any location of sprayers.
- Arbitrary piston bowl shape.
- Arbitrary sprays configuration.

Data base of piston bowls is supported.
Interface for specification of few Fuel Injection Systems in one engine

Every injector has own injection profile

2-stroke marine diesel
Simulation of combustion in Dual Fuel Engine

Every system supplies own fuel:
A – Diesel oil
B – Methanol

DIESEL-RK allows control sprays 3D evolution & intersections

Computational time ~ 1…2 min.
Simulation of combustion of Methanol in Dual Fuel Marine diesel W32

<table>
<thead>
<tr>
<th></th>
<th>Experim.</th>
<th>Simulat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BMEP$, bar</td>
<td>20.85</td>
<td>20.65</td>
</tr>
<tr>
<td>p_{max}, bar</td>
<td>160</td>
<td>164</td>
</tr>
</tbody>
</table>

Spray tip penetration [mm]
SMD [micron]

Injection profiles
DIESEL-RK capabilities

Full cycle thermodynamic engine simulation tool DIESEL-RK has following features for combustion optimization:

- Any multiple injection strategy.

- Injection profile may be specified:
 ● as diagram;
 ● parametrically (for optimization of the shape).

- Effect of high injection pressure.
Soot formation model

Phenomenological simulation method takes into account features of sprayed fuel burning. It is assumed, the soot is formed mainly by two ways:

- As a result of chain destructive transformation of molecules of fuel diffusing from the surface of drops to the front of a flame.
- Owing to high-temperature thermal polymerization and dehydrogenization of a vapor-liquid core of evaporating drops.

In parallel to this, the process of burning of soot particles and reduction of their volumetric concentration owing to expansion occurs.

Sauter Mean Diameter (SMD) of droplets is calculating during injection of every portion of multiple injection. Evaporation constants are calculated as functions of pressure and temperature of zones.

Diagrams show soot formation in z-engine at Max Torque point @1500 RPM having split injection: Pilot injection is 15% and separation is 4 deg. Injection pressure is a pressure before nozzles.
Simulation of soot emission in the diesel over the whole speed range.

Comparison between calculated and experimental data.

Power

Truck diesel S/D=120/120

Power

Simulation
Illustration of high accuracy of ICE simulation over the whole operating range (1)

Truck diesel: S/D=140/130

Power

Click picture to zoom and start visualization
Illustration of high accuracy of ICE simulation over the whole operating range (2)

Comparison between calculated and experimental data

<table>
<thead>
<tr>
<th></th>
<th>Measur.</th>
<th>Calcul.</th>
<th>Δ,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pow</td>
<td>180.3</td>
<td>178.</td>
<td>1.2</td>
</tr>
<tr>
<td>SFC</td>
<td>219</td>
<td>222</td>
<td>1.4</td>
</tr>
<tr>
<td>NOx</td>
<td>2160</td>
<td>1990</td>
<td>7.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Measur.</th>
<th>Calcul.</th>
<th>Δ,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pow</td>
<td>90.2</td>
<td>86</td>
<td>4.6</td>
</tr>
<tr>
<td>SFC</td>
<td>223</td>
<td>235</td>
<td>5.4</td>
</tr>
<tr>
<td>NOx</td>
<td>1430</td>
<td>1023</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Measur.</th>
<th>Calcul.</th>
<th>Δ,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pow</td>
<td>18</td>
<td>16.2</td>
<td>10</td>
</tr>
<tr>
<td>SFC</td>
<td>411</td>
<td>456</td>
<td>11</td>
</tr>
<tr>
<td>NOx</td>
<td>280</td>
<td>320</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Measur.</th>
<th>Calcul.</th>
<th>Δ,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pow</td>
<td>244.3</td>
<td>252</td>
<td>3.1</td>
</tr>
<tr>
<td>SFC</td>
<td>240</td>
<td>232</td>
<td>3.3</td>
</tr>
<tr>
<td>NOx</td>
<td>1920</td>
<td>1869</td>
<td>2.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Measur.</th>
<th>Calcul.</th>
<th>Δ,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pow</td>
<td>122.2</td>
<td>122.</td>
<td>0</td>
</tr>
<tr>
<td>SFC</td>
<td>258</td>
<td>258</td>
<td>0</td>
</tr>
<tr>
<td>NOx</td>
<td>980</td>
<td>930</td>
<td>5.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Measur.</th>
<th>Calcul.</th>
<th>Δ,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pow</td>
<td>24.4</td>
<td>25.1</td>
<td>2.9</td>
</tr>
<tr>
<td>SFC</td>
<td>577</td>
<td>560</td>
<td>2.9</td>
</tr>
<tr>
<td>NOx</td>
<td>240</td>
<td>260</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Δ is the relative error
Illustration of high accuracy of ICE simulation over the whole operating range (3)

Characteristic of locomotive diesel S/D=260/260

Click picture to zoom and start visualization
Illustration of high accuracy of ICE simulation over the whole operating range (4)

Comparison between calculated and experimental data

Characteristic of locomotive diesel S/D=260/260

Air Flow is the Air flow rate;
T_t is Turbine inlet temperature;
Smoke is the Bosch smoke number.
Advanced NOx Formation Model

- **Detail Kinetic Mechanism**

 for advanced diesel engines:
 - with **Multiple Injection** or / and with high EGR
 - working on alternative fuels: DME, Biofuel

 The detail kinetic mechanism consists of two blocks:
 - initial disintegration of a fuel molecule, consisting of **40 reactions** with participation of **10 species**;
 - the detail kinetic mechanism of methane oxidation and NOx formation, consisting of **199 reactions** and **33 species**.

- **Thermal Zeldovich’s mechanism**

 for conventional diesel engines
 - Temperature in a zone of combustion is defined by zone model.
 - On each step the equilibrium composition of **18 species** is defined in a zone of combustion.
 - The calculation of NOx formation is carried out with the kinetic equation.
Advanced NOx Formation Model

- **Thermal Zeldovich’s mechanism** can not be used for engines with large EGR.

- **Detail Kinetic Mechanism** (Basevich’s scheme)

 DKM is intended for engines:
 - with **Multiple Injection** or / and with massive **EGR** or/and with **PCCI**;
 - working on alternative fuels: **DME, Biofuel, etc.**

 The detail kinetic mechanism consists of two blocks:
 1) The Initial disintegration of a fuel molecule, consisting of **40 reactions with 10 species**;
 2) The detail kinetic mechanism of methane oxidation and NOx formation, consisting of **199 reactions with 33 species**.

 • Temperature in a zone of combustion is defined by zone model.

Measured NOx and simulated NOx with Zeldovich and DKM

a) for 1 cyl. diesel engine S/D=66/82 mm) and 3600 RPM. **b)** 4cyl. 2 liters light duty diesel with max BMEP=26 bar (massive EGR)
Simulation of combustion in diesel with different strategies of fuel injection

Caterpillar 3401
D/S=137/165; e=16.5
BMEP=10 bars
RPM=1600,
Injector: 6x0.259x125

Simulation of NOx formation in diesel with different strategies of fuel injection

<table>
<thead>
<tr>
<th>CASE 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 5</th>
<th>Case 6</th>
<th>Case 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Double</td>
<td>Double</td>
<td>Triple</td>
<td>Triple</td>
</tr>
<tr>
<td>NOx emission, g/kWh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experiment Calculation

- Case 1: Single injection, -12.5 deg.
- Case 2: Single injection, -8.5 deg.
- Case 3: Single injection, -2.5 deg.
- Case 4: Double injection, -3.0 deg. (50:50)
- Case 5: Double injection, -3.0 deg. (50:50)
- Case 6: Triple injection, -3.0 deg. (48:36:16)
- Case 7: Triple injection, -6.0 deg. (48:36:16)
Experimental data were published by: Gary D. Neely, Shizuo Sasaki and Jeffrey A. Leet "Experimental Investigation of PCCI-DI Combustion on emissions in a Light-Duty Diesel Engine" SAE Pap N 2004-01-0121, 2004
It is possible to define duration and fraction of each pilot to avoid the hitting of the fuel on the liner.

Peugeot DW10-ATED4

(4L8.5/8.8)

RPM=2600

LTC: Low Temperature Combustion

HTC: High Temperature Combustion
PCCI modeling

If Large Drops injected at the end of every portion have not enough time to be evaporated completely the Air/Fuel eq. ratio being responsible for ignition delay is 1 (left diagram).

If the Large Drops are evaporated The Air/Fuel eq. ratio starts to grow up to total value being character for whole cylinder; it results in: preparation of fuel to selfignition slows down. First portion being ignited will have Integral reached 1 first.

Peugeot DW10-ATED4 (4L8.5/8.8) RPM=2600; BMEP = 8.7 bar; Triple pilot: 28%

Injection timing : 70 deg .BTDC

Injection timing : 90 deg. BTDC

Livengood – Wu integral of Ignition Delay:

\[\int_{\tau_{ign}}^{\tau} \frac{d\tau}{\tau_{ign}} = 1 \]
PCCI modeling

Peugeot DW10-ATED4 (4L8.5/8.8)

RPM=2600

Double pilot 15%

LTC: Low Temperature Combustion

HTC: High Temperature Combustion

Experimental data were published by:
Data base of fuels and Gas engines simulation

User can create own fuel and save one in the data base.
-- Blends of biofuels with diesel oil are supported.
-- Arbitrary mixed of gases are supported for gas engine. Properties of mixture are calculated automatically

It is possible to set individual fuel for every operating mode. It allows presentation of engine parameters as function of fuel composition.

List of gases

H2 Hydrogen
O2 Oxygen
N2 Nitrogen
H2O Water Vapor
CO2 Carbon Dioxide
CH4 Methane
C2H6 Ethane
C3H8 Propane
C4H10 Butane
CH3OH Methanol
CH3-O-CH3 Dimethyl Ether
C2H5OH Ethanol

Project Fuel Library

Diesel No. 2
Biofuel SME B40
55%CH4+35%CO2+10%H2O

Fuel Title: 55%CH4+35%CO2+10%H2O
Fuel Group: Bio Gas
Class: Gas

Substance | CH4 | CO2 | H2O | % Volume | 55 | 35 | 10 | 0

Composition (mass fractions)

C: 0.4295
H: 0.05787
O: 0.5782

Sulfur fraction in fuel, [%]: 0
Low Heating Value of fuel, [MJ/kg]: 16.93
Variable Valve Lift / Timing Analysis

Valve Lift Diagram with variable valve actuation can be set individually for every operating mode. Resulted Effective flow area diagrams:

Flow Coefficient in equation:
\[\text{Eff}_{\text{area}} = C_f \cdot 3.14 \cdot D_v \cdot L_v \]

- Mode #1
 - Actual number of working Valves: 2
 - Maximal Valve Lift, Lv, mm: 15.6
- Mode #2
- Mode #3
- Mode #4
- Mode #5
- Mode #6
- Mode #7

Control of Valve dwell:
- Specification of Dwell Beginning of Valve (at line 3)
 - Set Period Pd3 before Phase of Valve Closing (at line 2), deg.
 - Dwell the Valve on Fixed Lift Ld, mm
 - Dwell the Valve on Fixed Rated Lift: Ld/Lv

- Duration of valve dwell, Pd4, deg.

- Total Phase of Valve Closing, deg. ABDC

Diagram of Valve Lift during its Closing at line (4)
Detail temperature fields of engine components

Account of walls local temperatures at in-cylinder processes simulation.

Simultaneous simulation of thermo-dynamic processes with Finite Element Analysis

Data base of engine parts is included
Drag & drop to assemble any combination of parts
Boundary conditions and materials properties data base
Result temperature field is used for evaporation simulation

Mesh is generated automatically
Link DIESEL-RK with another Simulation Tools

Run DIESEL-RK kernel under the control of external codes
Engine parameters optimization problem

Optimization objectives:

1. Decrease of SFC \[Z_1 = SFC = f(X) \rightarrow \text{MIN} \]

2. Decrease of particulate matter emission (PM) and nitrogen oxides emission (NOx) together.

\[Z_2 = S\bar{E} = \max \left(1, \frac{NOx}{NOx_0} \right)^{k_1} + \max \left(1, \frac{PM}{PM_0} \right)^{k_2} + \frac{SFC}{SFC_0}^{k_3} \rightarrow \text{MIN} \]

where index “0” means required values.

3. … etc.

Arguments:

- CR - Compression ratio;
- n, dn - Number and Diameter of injector nozzles;
- φ, θ - Injection Duration and Injection Timing;
- PR, EGR, Valve timing, Bypasses, etc.
- InjProf - Injection profile including strategy and parameters of multiple injection;
- PistBowl - Piston bowl shape;
- α, β - Injector nozzles directions in both planes.

The structured arguments: Injection profile, Piston bowl shape, Injector nozzles design are assigned by user and may be varied by sequential retrieval.

Limits:

- Pz - Maximum cylinder pressure (Pz < 150 bar);
- Pinj - Maximum injection pressure (Pinj < 1500 bar);
- Tt - Temperature before turbine;
- SFC, etc.
Solution of engine parameters optimization problem

1D problem: example
\[Z_1 = SFC = f(X_1) \rightarrow \text{MIN}; \]
\[X_1 = EVO \]
Method: 1D scanning
Decision is made by user

2D problem: example
\[Z_2 = SE (PM, NO) = f(X_1, X_2) \rightarrow \text{MIN}; \]
\[X_1 = \phi_{\text{inj\,dur}}; \quad X_2 = \theta_{\text{inj\,tim}}; \quad Y_1 = p_{\text{inj}} < 1000 \text{ bar}; \ldots \]
Method: 2D scanning
Decision is made by user

DIESEL-RK carries out the simulation of ICE in the nods of orthogonal grid.

Drag and drop technique to plot 3D diagrams and plot isolines.

Number of nods and space are selected by user.
2D scanning results presentation

The results of scanning may be displayed as 3-D diagram and isolines.
Multidimensional optimization of engine parameters

Engine 8 parameters optimization at full load point.

8D optimization of engine parameters.

Limitations: $P_{\text{max}} < 200$ bar.
$dp/dCA < 5$ bar/deg.
Solution of engine parameters optimization problem

nD problem:

\[SE = \max \left(1, \frac{NO_x}{NO_x_0} \right)^{k_1} + \max \left(1, \frac{PM}{PM_0} \right)^{k_2} + \left(\frac{SFC}{SFC_0} \right)^{k_3} \]

Method:

Multiparametric optimization by means of nonlinear programming

- **Library of DIESEL-RK includes:**
 - 15 Procedures for Multidimensional optimum search
 - 4 Procedures for One-dimensional search

Decision is made by optimization procedure (because graphic interpretation of result is impossible).
Calibration of the combustion model of light duty diesel

Comparison of experimental and measured HRR and in-cylinder pressure at different 10 engine operating points.

All empirical coefficients are same for each point.
Comparison of experimental and measured HRR and in-cylinder pressure at different 10 engine operating points. All empirical coefficients are same for each point.
Calibration of the combustion model of light duty diesel

Comparison of experimental and measured engine parameters at different engine operating points.

All empirical coefficients are same for each point.
Calibration of the model performed by GM

Comparison of experimental and measured parameters at different 10 engine operating points
Calibration of the model performed by GM

Comparison of experimental and measured parameters at different 10 engine operating points.
Calibration of the model performed by GM

Comparison of experimental and measured parameters at different engine operating points

89 experimental points were used

IMEP: Indicated mean effective pressure
Comparison of the thermodynamic engine simulation programs

Accessible Functions for Engine Analysis

• Difference between the cylinders
• Transient operating modes simulation
• Analysis of Noise
• List of easy diesel combustion models, including Hiroyasu model & user model.
• Link with CFD spray model using KIVA code.
• Link with valve train simulators, etc.

• Overall Engine Analysis
• Steady state operating modes
• Turbocharging analysis
• Gas Exchange analysis
• Heat Exchange analysis
• Valve Timing optimization
• 4 stroke & 2 stroke engines.
• Junkers and OPOC engines.
• Zeldovich NO formation model
• Thermodynamic EGR analysis
• Export/Import data via clipboard
• 1 parametrical researches.
• Account of the swirl at spray behavior simulation
• Phenomenological Soot model

• Express engine analysis (function of automatic engine design prediction & empiric coefficients setting for the case of data deficit)
• Gas SI engines with prechamber (arbitrary gas)
• Automatic Multi Dimensional Optimization
• 2 parametrical researches
• Advanced multi-zone DI diesel spray combustion model:
 • Optimiz. of Piston Bowl Shape (& Data Base of piston bowls & advanced graphic interface)
 • Optimiz. of Injector design including central & non-central sprayer as well side injection system (& 3D Fuel spray evolution visualization)
• Account of adjacent sprays interaction in volume and near the wall.
• Optimiz. of multiple injection strategy and PCCI strategy (& advanced graphic interface)
• Detail Kinetic Mechanism for NO formation (199 reactions 33 spec.)
• Bio-Fuels and blends & Data base of fuels
• Detail Chemistry (LLNL mech. 1540 reactions) at Ignition Delay simulation (PCCI / HCCI).
• Run under control of another software tools
• Coupled thermodynamic simulations with FEA (account how the local wall temperature effect in fuel evaporation)
Additional options of DIESEL-RK

Simulation of GAS and DUAL FUEL ENGINES.
- Injection of WATER;
- Ignition by pilot diesel injection into PRECHAMBER